Stability of the orthogonality preserving property in finite-dimensional inner product spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonality preserving mappings on inner product C* -modules

Suppose that A is a C^*-algebra. We consider the class of A-linear mappins between two inner product A-modules such that for each two orthogonal vectors in the domain space their values are orthogonal in the target space. In this paper, we intend to determine A-linear mappings that preserve orthogonality. For this purpose, suppose that E and F are two inner product A-modules and A+ is the set o...

متن کامل

Inner Product Spaces and Orthogonality

1 Dot product of R The inner product or dot product of R is a function 〈 , 〉 defined by 〈u,v〉 = a1b1 + a2b2 + · · ·+ anbn for u = [a1, a2, . . . , an] , v = [b1, b2, . . . , bn] ∈ R. The inner product 〈 , 〉 satisfies the following properties: (1) Linearity: 〈au + bv,w〉 = a〈u,w〉+ b〈v,w〉. (2) Symmetric Property: 〈u,v〉 = 〈v,u〉. (3) Positive Definite Property: For any u ∈ V , 〈u,u〉 ≥ 0; and 〈u,u〉 =...

متن کامل

Orthogonality Preserving Transformations on Indefinite Inner Product Spaces: Generalization of Uhlhorn’s Version of Wigner’s Theorem

We present an analogue of Uhlhorn’s version of Wigner’s theorem on symmetry transformations for the case of indefinite inner product spaces. This significantly generalizes a result of Van den Broek. The proof is based on our main theorem, which describes the form of all bijective transformations on the set of all rank-one idempotents of a Banach space which preserve zero products in both direct...

متن کامل

Operators Reversing Orthogonality and Characterization of Inner Product Spaces

In this short paper we answer a question posed by Chmieliński in [Adv. Oper. Theory 1 (2016), no. 1, 8–14]. Namely, we prove that among normed spaces of dimension greater than two, only inner product spaces admit nonzero linear operators which reverse the Birkhoff orthogonality.

متن کامل

Math 172: Inner Product Spaces, Symmetric Operators, Orthogonality

Definition 1. An inner product on a complex vector space V is a map 〈., .〉 : V × V → C such that (i) 〈., .〉 is linear in the first slot: 〈c1v1 + c2v2, w〉 = c1〈v1, w〉+ c2〈v2, w〉, c1, c2 ∈ C, v1, v2, w ∈ V, (ii) 〈., .〉 is Hermitian symmetric: 〈v, w〉 = 〈w, v〉, with the bar denoting complex conjugate, (iii) 〈., .〉 is positive definite: v ∈ V ⇒ 〈v, v〉 ≥ 0, and 〈v, v〉 = 0⇔ v = 0. A vector space with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2006

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2005.06.016